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Announcements

■ Lab 1 is out:
● Make sure to find a pair to work on it with. If you can’t find one, let me know by Tuesday.
● It is an easy lab: you’ll just need the basis of Python/Numpy + this slide deck. Feel free to ask 

me or come to my office hours if you have questions about either Python or Numpy.
● The instructions carry a little info on what I expect in the report. I’ll go easy on the grade this 

time, so you know what to improve for the next lab.
● Keep in mind your late day budget (4 for all labs).

■ Let me know if any of you have enrollment questions.
■ Lecture attendance: 

● I won’t take attendance for most lectures and you are not require to make to all lectures.
● However, if I notice a student missing many consecutive lectures, that will heavily impact their 

participation grade.

■ Our LA, Brian, sent an email asking for his office hours!



Announcements

■ Amazon Go is a flop! It seems that it won’t grow bigger than small shops

In a statement, Amazon said it will continue using the Just Walk Out technology in 
Amazon Go stores, at smaller format Fresh stores in the UK, and third-party locations 

such as certain sports stadiums and college campuses

■ On the other hand, another CV technology is taking place: Dash Carts!

https://amp.cnn.com/cnn/2024/04/03/business/amazons-self-checkout-technology-grocery-flop
http://www.youtube.com/watch?v=Kcev-IdH8Vc
http://www.youtube.com/watch?v=Re2IIov7dz8
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The image classification problem

Labeled 
images of cats

Labeled 
images of dogs

■ The first task in Computer Vision we are 
tackling is that of Image Classification:

Image Classification the process of 
recognition, understanding, and grouping of 

images into preset categories or classes.

■ We want a model (or rule) that effectively 
categorizes (unseen) images into a set of 
target classes.

■ In order to find this rule, we have a set of 
labeled example images at our disposal that 
we can train our model on and learn that rule.

■ This process of finding such a model from 
labeled data is called Supervised Learning.
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The image classification problem

Rule Cat

Unseen (unlabeled) images

Rule Dog

Rule ???

(Predicted) 
classes

In some settings, the rule can 
also output “don’t know”!

■ The first task in Computer Vision we are 
tackling is that of Image Classification:

Image Classification the process of 
recognition, understanding, and grouping of 

images into preset categories or classes.

■ We want a model (or rule) that effectively 
categorizes (unseen) images into a set of 
target classes.

■ In order to find this rule, we have a set of 
labeled example images at our disposal that 
we can train our model on and learn that rule.

■ This process of finding such a model from 
labeled data is called Supervised Learning.



Supervised Classification Pipeline

Labeled Examples Learning Algorithm Rule

Unlabeled Examples

Predicted ClassesHow good?



Example of Classification Problem

Original Data New Unlabeled Datapoint

What the class 
of this point (call 

it x)?

Data in 2 dimensions 
with labels either 

“square” or “triangle” 
(call them y).



Original Data

Linear Classifiers

Decision 
Boundary

■ We need to find a classification rule 
(decision boundary) based on the 
labeled data.

■ Today’s choice:

Linear Classifiers
■ Which means: “If x is on one side of 

the line, it is a triangle, otherwise it is a 
square”.

■ How to definite the line and its sides 
mathematically, so we can come up 
with algorithms?



A linear classifier in 2D

■ In 2D, we represent a line using three 
numbers:
● Two to form a vector w = [w1, w2] 

called weight vector;
● One number called bias, b.

■ If a new point x = [x1,x2] comes in, we just 
check whether:

■ If True, x lies on one side of the plane, if 
False it belongs to the other side

■ If equal, it x is exactly on the line, and it 
can be classified as either True or False.



A linear classifier in 2D

■ The direction of the vector of weights 
plays a role here too.

■ It always points to the side where the 
value of w1x1 + w2x2 > b is True:

■ The boundary is, however, the same in 
both cases, and one can change the 
direction of w by setting w = -w.



A linear classifier in 2D

■ Now, we can also define the weight vector 
to include b, making:

w = [w0, w1, w2]

where b = -w0.

■ Now, because of that change in w, we 
need we add a new dimension with a “1” 

to all data points x:

x = [1, x1, x2]

■ For example, if x was [5, 7] initially, now it 
will be [1, 5, 7].

■ We’ll use this change in today’s examples.



A linear classifier in 2D

■ Finally, we can use the following notation:

wTx = [w0, w1, w2]T[1,  x1, x2]

= w0 + w1x1+ w2x2,

where T is the transpose operation.
■ This notation is called the inner product, 

and it is handy since it is the same even if 
our data points are of D > 2 dimensions.

■ Mathematically, the predicted class ŷ of a 
point x by a linear classifier given by w is:



Linear Classifier Model: Perceptron

x1

x2

…

xD

1

∑ a

■ Using these concepts, we can build a model for classification called perceptron!

Input Dimension #1

Input Dimension #2

Input Dimension #D

ŷ 

w0

w1

w2

wD



w0

Linear Classifier Model: Perceptron

x1

x2

…

xD

1

∑ a

w1

w2

wD

ŷ 

Input Dimension #1

■ Below, you have some important nomenclature of the inner workings of the perceptron:

Activation Function, given by:
Sums all 
incoming 

edges

Perceptron weights

Outputs the predicted class, +1 or -1

Input Dimension #2

Input Dimension #D
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Linear Classifier Model: Perceptron
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■ Say we know the perceptron weights, then classifying a new point is easy. For example:

A data point to 
be classified
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■ Say we know the perceptron weights, then classifying a new point is easy. For example:
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Linear Classifier Model: Perceptron
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1×3+3×7 +5×(-1)+10×(-2)+(-2)×2 = 
-5

■ Say we know the perceptron weights, then classifying a new point is easy. For example:
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Linear Classifier Model: Perceptron
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■ Say we know the perceptron weights, then classifying a new point is easy. For example:
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Linear Classifier Model: Perceptron
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ŷ = -1

■ This process is called Forward Pass. 



Exercise (In pairs)

-2 -1 1 2

2

1

-1

-2

■ Find weights w = [w0, w1, w2] for the lines that separate the triangles from the 

rectangles. After that draw the vector [w1, w2] on the plane.

-2 -1 1 2

2

1

-1

-2



■ The perceptron model was developed to 
mathematically model human neurons!

■ It was proposed Warren MuCulloch (neuroscientist) 
and Walter Pitts (logician) in 1943.

■ It is considered the first Artificial Neural Network 
model and is the basis of deep learning.

Neurons and the perceptron



The Neuron



Supervised Learning with the Perceptron

■ The perceptron needs a linear 
classifier when classifying.

■ We need then a way to 
compute the perceptron 
weights w0, w1, w2, ... , wD .

■ We can learn them from a 
training dataset S using the 
Perceptron Algorithm, first 
implemented by Frank 
Rosenblatt in 1958.

■ If S is linearly separable, it 
necessarily finds an optimal 
decision boundary.

Frank Rosenblatt working on the 
perceptron algorithm 

implementation at Cornell in 1958. 

Non-Linearly separable datasets

Linearly separable dataset

Examples of linear 
separability in datasets



The Perceptron Algorithm

* Remember that the points are added a new dimension with a 1 to account for the bias term, go here for more details.

■ There are n points x(1), …, x(n) in D dimensions*, 
each with a class y(1), …, y(n) of either -1 or +1.

■ The perceptron algorithm is:
1. Start with a random w in D+1 dimensions*.
2. For i in 1 to n, do:

a. Find the predicted class, ŷ(i)
 = a(wTx(i)). 

b. If y(i) = ŷ(i), keep w the same (x(i) is 
correctly classified in this case).

c. If y(i)
 = +1 and ŷ(i) = -1: Do w = w + x(i)

d. If y(i)
 = -1 and ŷ(i) = +1: Do w = w - x(i)

3. Repeat step 2 (go over the dataset again) 
until all points are correctly classified.



The Perceptron Algorithm

Set triangles to have label +1 and squares 

to have label -1.

* Remember that the points are added a new dimension with a 1 to account for the bias term, go here for more details.

■ There are n points x(1), …, x(n) in D dimensions*, 
each with a class y(1), …, y(n) of either -1 or +1.

■ The perceptron algorithm is:
1. Start with a random w in D+1 dimensions*.
2. For i in 1 to n, do:

a. Find the predicted class, ŷ(i)
 = a(wTx(i)). 

b. If y(i) = ŷ(i), keep w the same (x(i) is 
correctly classified in this case).

c. If y(i)
 = +1 and ŷ(i) = -1: Do w = w + x(i)

d. If y(i)
 = -1 and ŷ(i) = +1: Do w = w - x(i)

3. Repeat step 2 (go over the dataset again) 
until all points are correctly classified.



The Perceptron Algorithm

Start with a random w, which represents a 

random line.

* Remember that the points are added a new dimension with a 1 to account for the bias term, go here for more details.

■ There are n points x(1), …, x(n) in D dimensions*, 
each with a class y(1), …, y(n) of either -1 or +1.

■ The perceptron algorithm is:
1. Start with a random w in D+1 dimensions*.
2. For i in 1 to n, do:

a. Find the predicted class, ŷ(i)
 = a(wTx(i)). 

b. If y(i) = ŷ(i), keep w the same (x(i) is 
correctly classified in this case).

c. If y(i)
 = +1 and ŷ(i) = -1: Do w = w + x(i)

d. If y(i)
 = -1 and ŷ(i) = +1: Do w = w - x(i)

3. Repeat step 2 (go over the dataset again) 
until all points are correctly classified.



The Perceptron Algorithm

Go over the points, until you find one whose 

ŷi  does not match with its true class, yi.
* Remember that the points are added a new dimension with a 1 to account for the bias term, go here for more details.

■ There are n points x(1), …, x(n) in D dimensions*, 
each with a class y(1), …, y(n) of either -1 or +1.

■ The perceptron algorithm is:
1. Start with a random w in D+1 dimensions*.
2. For i in 1 to n, do:

a. Find the predicted class, ŷ(i)
 = a(wTx(i)). 

b. If y(i) = ŷ(i), keep w the same (x(i) is 
correctly classified in this case).

c. If y(i)
 = +1 and ŷ(i) = -1: Do w = w + x(i)

d. If y(i)
 = -1 and ŷ(i) = +1: Do w = w - x(i)

3. Repeat step 2 (go over the dataset again) 
until all points are correctly classified.



The Perceptron Algorithm

Change w according to the mismatch.

* Remember that the points are added a new dimension with a 1 to account for the bias term, go here for more details.

■ There are n points x(1), …, x(n) in D dimensions*, 
each with a class y(1), …, y(n) of either -1 or +1.

■ The perceptron algorithm is:
1. Start with a random w in D+1 dimensions*.
2. For i in 1 to n, do:

a. Find the predicted class, ŷ(i)
 = a(wTx(i)). 

b. If y(i) = ŷ(i), keep w the same (x(i) is 
correctly classified in this case).

c. If y(i)
 = +1 and ŷ(i) = -1: Do w = w + x(i)

d. If y(i)
 = -1 and ŷ(i) = +1: Do w = w - x(i)

3. Repeat step 2 (go over the dataset again) 
until all points are correctly classified.



The Perceptron Algorithm

Go to the next data points where there is a 

mismatch.

* Remember that the points are added a new dimension with a 1 to account for the bias term, go here for more details.

■ There are n points x(1), …, x(n) in D dimensions*, 
each with a class y(1), …, y(n) of either -1 or +1.

■ The perceptron algorithm is:
1. Start with a random w in D+1 dimensions*.
2. For i in 1 to n, do:

a. Find the predicted class, ŷ(i)
 = a(wTx(i)). 

b. If y(i) = ŷ(i), keep w the same (x(i) is 
correctly classified in this case).

c. If y(i)
 = +1 and ŷ(i) = -1: Do w = w + x(i)

d. If y(i)
 = -1 and ŷ(i) = +1: Do w = w - x(i)

3. Repeat step 2 (go over the dataset again) 
until all points are correctly classified.
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b. If y(i) = ŷ(i), keep w the same (x(i) is 
correctly classified in this case).

c. If y(i)
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d. If y(i)
 = -1 and ŷ(i) = +1: Do w = w - x(i)
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The Perceptron Algorithm

Do that until there are no mismatches.

* Remember that the points are added a new dimension with a 1 to account for the bias term, go here for more details.

■ There are n points x(1), …, x(n) in D dimensions*, 
each with a class y(1), …, y(n) of either -1 or +1.
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The Perceptron Algorithm

Do that until there are no mismatches.

* Remember that the points are added a new dimension with a 1 to account for the bias term, go here for more details.

■ There are n points x(1), …, x(n) in D dimensions*, 
each with a class y(1), …, y(n) of either -1 or +1.

■ The perceptron algorithm is:
1. Start with a random w in D+1 dimensions*.
2. For i in 1 to n, do:

a. Find the predicted class, ŷ(i)
 = a(wTx(i)). 

b. If y(i) = ŷ(i), keep w the same (x(i) is 
correctly classified in this case).

c. If y(i)
 = +1 and ŷ(i) = -1: Do w = w + x(i)

d. If y(i)
 = -1 and ŷ(i) = +1: Do w = w - x(i)

3. Repeat step 2 (go over the dataset again) 
until all points are correctly classified.



Measuring classification efficiency

■ For non-linearly separable datasets, the perceptron algorithm 
won’t find a linear classifier that correctly classifies all points.

■ If the classification isn’t perfect, we need to find a measure of 
how good it is.

■ One possible measure is our Classification Accuracy (Acc):

If triangles are +1 and squares 
-1, the above classifier has an 

accuracy of 10/15 = 0.66%

■ It is easy to evaluate a model’s performance with it, since 0 ≤ Acc ≤ 1 and the accuracy 
higher the better.

■ However, Acc only assumes “discrete” values, since we have a discrete number of points, 
which can be a hindrance to many learning algorithms. 

■ For that reason we may use a closely related measure called loss (more on it next time).



Classification Pipeline for the Perceptron

Labeled Examples
(Train Set)

Algorithm
(Perceptron Algorithm)

Rule
(Linear Classifier)

Unlabeled Examples
(Test Set)

Predicted Classes
(Classification)

How good?
(Accuracy)



■ You have the points x1 = [−1, 0], x2 = [0, −1] 
and x3 = [1, 1]. Assume rectangles are of class 
-1 and the triangle of class 1. Do the following:
● Say we start with w = [2, −1] and b = 0. Draw 

on the image above the linear separator that w 
and b generates.

● Redefine w to be w = [w0, w1, w2]. Change the 
definitions of x1, x2 and x3, accordingly.

● Perform each step of the perceptron algorithm to 
find the a new value w.

● Draw on the image above the new linear 
separator defined by w.

● Draw point x4 = [2, -2] and classify it using the 
new value for w.

Exercise (In pairs)

-2 -1 1 2
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